Accesează aplicația

Materii

63

24 dec. 2025

43 pagini

Introducere în Teoria Relativității Restrânse

Ș

Ștefănescu Daria

@dariaaa27

Teoria relativității restrânse, formulată de Einstein în 1905, reprezintă o... Afișează mai mult

Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 14
Page 15
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
Page 26
Page 27
Page 28
Page 29
Page 30
Page 31
Page 32
Page 33
Page 34
Page 35
Page 36
Page 37
Page 38
Page 39
Page 40
Page 41
Page 42
Page 43
1 / 43
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Introducere în teoria relativității restrânse

Teoria relativității restrânse (TRR) studiază fenomenele fizice raportate la sistemele de referință inerțiale și a fost formulată de Albert Einstein în 1905. Acest capitol începe cu o analiză a conceptului de eveniment și coordonate.

Un eveniment în fizică este definit prin patru coordonate: trei spațiale (x, y, z) care indică locul și una temporală (t) care arată momentul. Aceleași evenimente pot fi observate din sisteme de referință (SR) diferite, fiecare observator măsurând coordonatele cu propriile instrumente.

Transformările de coordonate stabilesc legătura dintre măsurătorile făcute de observatori diferiți. Un aspect important este diferența dintre mărimile relative (care depind de sistemul de referință) și cele absolute sau invariante (care sunt identice pentru toți observatorii).

🔍 Reține! Mecanica clasică presupune că interacțiunile se transmit instantaneu la distanță (cu viteză infinită), ceea ce permite existența unui timp universal pentru toți observatorii.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Transformările Galilei

Transformările Galilei se aplică în cazul sistemelor de referință inerțiale (SRI) care se mișcă cu viteze mici comparativ cu viteza luminii. Aceste transformări reflectă principiile mecanicii clasice newtoniene.

Prima transformare Galilei privește timpul și afirmă că timpul este absolut, identic pentru toți observatorii:

t = t'

Acest lucru implică simultaneitatea absolută - evenimente care sunt simultane pentru un observator vor fi simultane pentru orice alt observator. În mecanica clasică, duratele (intervalele de timp) sunt considerate absolute, invariante, indiferent de mișcarea ceasornicelor sau a obiectelor.

Pentru a deduce restul transformărilor Galilei, considerăm două sisteme de referință inerțiale S și S' în mișcare relativă cu viteza constantă. Măsurătorile temporale în cele două sisteme sunt identice, însă coordonatele spațiale se transformă conform unor reguli care țin cont de mișcarea relativă.

💡 Important! În mecanica clasică, timpul curge identic pentru toți observatorii, indiferent de starea lor de mișcare - un concept care va fi complet schimbat de teoria relativității.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Relațiile spațio-temporale în sistemele de referință

Considerând două sisteme de referință inerțiale S și S' cu originile O și O' aflate în mișcare relativă cu viteza constantă v0\vec{v}_0, putem stabili relația dintre vectorii de poziție ai unui punct P în cele două sisteme:

$\vec{r} = \vec{r'} + \vec{v}0 t' + \vec{r}{0i}$

Aici, r0i\vec{r}_{0i} reprezintă poziția inițială a originii O' față de O, iar termenul v0t\vec{v}_0 t' reflectă deplasarea sistemului S' față de S în timpul scurs.

Această relație vectorială poate fi exprimată în coordonate carteziene, obținând transformările Galilei complete:

SS:{x=x+v0xt+x0i y=y+v0yt+y0i z=z+v0zt+z0i t=tS' \Rightarrow S: \begin{cases} x = x' + v_{0x}t' + x_{0i} \ y = y' + v_{0y}t' + y_{0i} \ z = z' + v_{0z}t' + z_{0i} \ t = t' \end{cases}

Aceste ecuații arată cum se transformă coordonatele spațiale și temporale când trecem de la un sistem de referință la altul.

🔍 Observație! Transformările Galilei sunt fundamentale pentru înțelegerea relativității clasice, dar ele vor fi înlocuite de transformările Lorentz în teoria relativității restrânse.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Invarianții în mecanica clasică

În mecanica clasică, anumite mărimi fizice rămân neschimbate (invariante) la trecerea între sistemele de referință inerțiale.

Invarianța accelerației este un concept fundamental. Când trecem de la un sistem de referință la altul, accelerația corpului rămâne aceeași:

a=a\vec{a} = \vec{a'}

Acest lucru înseamnă că un corp are aceeași accelerație în orice sistem de referință inerțial - o proprietate importantă pentru formularea legilor lui Newton.

Invarianța forțelor rezultă direct din invarianța accelerației. În mecanica clasică, masa unui corp este considerată aceeași în toate sistemele de referință, iar din relația F=ma\vec{F} = m\vec{a} rezultă că:

F=F\vec{F} = \vec{F'}

Adică toți observatorii din sisteme inerțiale vor măsura aceeași forță acționând asupra unui corp.

💡 Reține! În mecanica clasică, forța și accelerația sunt invarianți la transformările Galilei, ceea ce permite aplicarea universală a legilor lui Newton în orice sistem inerțial.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Transformări Galilei în cazul simplificat

În practică, deseori întâlnim situații simplificate în care sistemele de referință au axe comune sau paralele. Un caz particular important este când sistemele S și S' au:

  • originile comune la momentul inițial
  • axele Ox și O'x' coliniare
  • celelalte axe paralele
  • sistemul S' se deplasează cu viteza v0\vec{v_0} pe direcția axei Ox

În acest caz, transformările Galilei SSS' \Rightarrow S se simplifică la:

\left{ \begin{array}{l} x = x' + v_0 t' \ y = y' \ z = z' \ t = t' \end{array} \right.

Transformările inverse SSS \Rightarrow S' se obțin simplu, schimbând semnul vitezei:

\left{ \begin{array}{l} x' = x - v_0 t \ y' = y \ z' = z \ t' = t \end{array} \right.

Aceste forme simplificate sunt folosite frecvent în probleme de mecanică clasică și oferă o imagine clară a relațiilor dintre coordonatele măsurate în cele două sisteme.

🔍 Notă! Cu cât sistemele de referință au o geometrie mai simplă (axe paralele sau coliniare), cu atât transformările dintre ele devin mai ușor de aplicat.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Principiul relativității în mecanica clasică

Principiul relativității reprezintă o idee centrală în fizică, enunțând că legile mecanicii sunt aceleași în toate sistemele de referință inerțiale. Acest principiu poate fi reformulat și astfel: legile mecanicii sunt invariante la transformările Galilei.

Ce înseamnă acest lucru practic? Toate sistemele de referință inerțiale sunt echivalente din punct de vedere mecanic - niciunul nu poate fi considerat absolut sau privilegiat. Este imposibil să determinăm, prin experimente mecanice efectuate într-un laborator inerțial, dacă laboratorul este în repaus sau în mișcare rectilinie uniformă.

Situația se schimbă când vorbim despre sisteme de referință neinerțiale (SRN). Principiile lui Newton nu sunt valabile în astfel de sisteme, ceea ce înseamnă că putem determina accelerația unui SRN față de un sistem inerțial prin experimente mecanice realizate în interiorul său.

Un exemplu celebru este pendulul lui Foucault, care a demonstrat rotația Pământului în jurul axei sale - dovadă clară că Pământul este un sistem de referință neinerțial.

💡 Important! Principiul relativității implică imposibilitatea detectării mișcării rectilinii uniforme din interiorul unui sistem închis - o idee fundamentală care va fi extinsă dramatic în teoria relativității restrânse.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Limitele relativității galileene

Aplicarea principiului relativității galileene la fenomenele electromagnetice întâmpină dificultăți majore, care evidențiază limitele mecanicii clasice newtoniene:

  1. Câmpul electromagnetic depinde de starea de mișcare a corpurilor încărcate electric, contrar invarianței anticipate de principiul relativității.

  2. Forța electromagnetică ce acționează asupra unei sarcini electrice depinde de viteza sarcinii față de sistemul de referință în care sunt formulate legile câmpului.

  3. Teoria lui Maxwell indică faptul că viteza luminii în vid are valoarea c=3108c=3\cdot10^{8} m/s, aceeași în toate direcțiile. Conform regulii clasice de compunere a vitezelor, acest lucru ar trebui să fie imposibil - viteza luminii ar trebui să fie diferită $\vec{c}-\vec{v}$ în sisteme de referință diferite.

Apare astfel o contradicție fundamentală: dacă acceptăm transformările Galilei, legile mecanicii respectă principiul relativității, dar legile electromagnetismului nu. Pentru a rezolva această contradicție, s-au formulat teorii care presupuneau existența unui mediu special numit eter universal - un suport material pentru câmpul electromagnetic.

🔍 Conflictul fundamental: Electrodinamica lui Maxwell implică o viteză constantă a luminii, incompatibilă cu transformările Galilei care ar trebui să modifice această viteză la trecerea dintr-un sistem de referință în altul.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Încercări de salvare a mecanicii clasice

Pentru a rezolva contradicția dintre electrodinamică și mecanica clasică, au apărut două teorii principale, ambele bazate pe conceptul de eter universal:

Ipoteza antrenării totale a eterului, formulată de Hertz, susținea că eterul este complet antrenat de corpurile în mișcare. Astfel, viteza luminii ar fi aceeași față de orice corp, indiferent de mișcarea sa uniformă. Această teorie păstra conceptele clasice despre spațiu și timp, dar a fost infirmată de experiența lui Fizeau.

Ipoteza neantrenării eterului, propusă de Lorentz, considera eterul ca fiind imobil și reprezentând un sistem de referință inerțial special, în care legile electrodinamicii au forma cea mai simplă dată de Maxwell. Doar în acest sistem viteza luminii ar avea valoarea constantă de 31083 \cdot 10^8 m/s în toate direcțiile. Această teorie nu a fost confirmată de experimentul Michelson-Morley.

Albert Michelson a construit un interferometru special pentru a încerca să detecteze mișcarea Pământului prin eter, căutând dovezi pentru existența unui "vânt eteric" - o încercare de a demonstra posibilitatea folosirii eterului ca sistem unic de referință pentru experiențele optice.

💡 Impas științific: La sfârșitul secolului XIX, fizica se afla într-un impas major - experimentele nu reușeau să confirme niciuna dintre teoriile care încercau să reconcilieze electrodinamica cu mecanica newtoniană.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Experimentul Michelson-Morley

Experimentul Michelson-Morley, realizat în 1881 și perfecționat ulterior, reprezintă una dintre cele mai importante încercări de a demonstra existența eterului și de a măsura mișcarea Pământului față de acesta.

Interferometrul Michelson este un dispozitiv ingenios format din:

  • Două oglinzi plane (O₁ și O₂)
  • O oglindă semitransparentă (P) care reflectă 50% din lumină și lasă restul să treacă
  • Oglinda semitransparentă așezată la 45° față de direcția luminii incidente

Principiul de funcționare este simplu: fasciculul incident se divide în două, unul reflectat către oglinda O₁, celălalt transmis către oglinda O₂. După reflexie, ambele fascicule se întorc la oglinda semitransparentă, unde interfereaza și produc franje circulare.

Interferometrul era montat pe un bloc de beton plutitor pe o baie de mercur, permițând rotirea ușoară a întregului dispozitiv. Un braț al interferometrului era orientat est-vest, paralel cu direcția vitezei orbitale a Pământului, iar celălalt nord-sud, perpendicular pe aceasta.

Teoria eterului prevedea că lumina ar trebui să se deplaseze cu viteze diferite pe cele două brațe ale interferometrului, datorită "vântului eteric", ceea ce ar fi trebuit să producă o schimbare vizibilă în modelul de interferență la rotirea aparatului.

🔍 Experiment crucial: Michelson și Morley au creat un experiment extrem de precis, capabil să detecteze chiar și cele mai mici diferențe în timpul de parcurs al luminii pe direcții diferite - rezultatul va schimba fundamental fizica.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Rezultatele experimentului și implicațiile sale

Experimentul Michelson-Morley se bazează pe diferența teoretică dintre timpii de propagare ai luminii pe cele două brațe ale interferometrului. Calculele arătau că:

Pentru brațul perpendicular pe direcția de mișcare: t1=2dc11v2c2t_1 = \frac{2d}{c} \cdot \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}

Pentru brațul paralel cu direcția de mișcare: t2=2dc(1v2c2)t_2 = \frac{2d}{c \left(1 - \frac{v^2}{c^2}\right)}

Aceste formule arată clar că timpii ar trebui să fie diferiți: t1t2t_1 \neq t_2. La rotirea interferometrului cu 90°, această diferență ar trebui să producă o deplasare a franjelor de interferență.

Rezultatul surprinzător: Michelson și Morley nu au detectat nicio deplasare semnificativă a franjelor! Acest rezultat negativ a indicat că viteza luminii este aceeași în toate direcțiile, indiferent de mișcarea Pământului.

Acest experiment a avut consecințe revoluționare:

  • A infirmat teoria eterului
  • A sugerat că viteza luminii este constantă în toate sistemele de referință
  • A pregătit terenul pentru teoria relativității restrânse a lui Einstein

💡 Concluzie revolutionară: Experimentul Michelson-Morley a arătat că legile fizicii nu se supun transformărilor Galilei când vine vorba de propagarea luminii, necesitând o nouă teorie a relativității - ceea ce Einstein va formula în 1905.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c
--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c


Credeam că nu vei întreba niciodată...

Ce este Companionul AI Knowunity?

Companionul nostru AI este creat special pentru nevoile studenților. Bazându-ne pe milioanele de materiale de pe platformă, putem oferi răspunsuri exacte și relevante pentru studenți. Dar nu este vorba doar despre răspunsuri, companionul este mai ales despre ghidarea studenților prin provocările zilnice de învățare, cu planuri de studiu personalizate, chestionare sau conținuturi în chat și personalizare 100% bazată pe abilitățile și evoluțiile studenților.

De unde pot descărca aplicația Knowunity?

Aplicația este disponibilă în Google Play Store și Apple App Store.

Este Knowunity chiar gratuită?

Da! Bucură-te de access la materiale de studiu, conectează-te cu alți elevi, și primește ajutor instant - toate acestea la un click distanță. În plus, câștigă puncte ca să deblochezi mai multe funcționalități!

Nu găsești ce cauți? Explorează alte MATERII.

Recenzii de la utilizatorii noștri. Ei iubesc să folosească Knowunity — și tu o vei face.

4.9/5

App Store

4.8/5

Google Play

Aplicația este foarte ușor de utilizat și bine concepută. Am găsit tot ce căutam până acum și am reușit să învăț multe din prezentări! Cu siguranță voi folosi aplicația pentru o temă la clasă! Și desigur, ajută mult ca sursă de inspirație.

Ștefan S

utilizator iOS

Această aplicație este super. Sunt atât de multe materiale de studiu și ajutor pentru elevi [...]. Materia mea mai problematică este franceza, de exemplu, și aplicația oferă foarte multe materiale ajutătoare. Mulțumită acestei aplicații, mi-am îmbunătățit franceza. Aș recomanda-o oricui.

Samantha Klich

utilizator Android

Wow, sunt cu adevărat impresionat. Am încercat aplicația pentru că am văzut-o promovată de multe ori și am rămas uimit. Aceasta este AJUTORUL de care ai nevoie pentru școală și, mai presus de toate, oferă atât de multe lucruri, precum exerciții și fișe de informații, care mi-au fost FOARTE de ajutor.

Anna

utilizator iOS

Te ajută să înveți foarte repede și ști foarte bine ce ai dori tu să înveți, vă recomand cu drag să încercați și să învățați mai repede.!

Thomas R

utilizator iOS

Foarte bună aplicația!!!! Mă ajută să înțeleg mult mai bine lecțiile și temele le termin mult mai repede.👍❤️

Paul P

utilizator Android

Te ajută foarte bine la teme acest robot,recomand!

David K

utilizator iOS

Aplicația e grozavă! Tot ce trebuie să fac este să introduc subiectul în bara de căutare și primesc răspunsul foarte rapid. Nu mai trebuie să mă uit la 10 videoclipuri pe YouTube pentru a înțelege ceva, deci îmi economisesc timpul. Super recomandat!

Sudenaz Ocak

utilizator Android

La școală eram chiar slab la matematică, dar datorită aplicației, mă descurc mai bine acum. Sunt atât de recunoscător că ai creat aplicația.

Greenlight Bonnie

utilizator Android

Această aplicație e super interesantă și seamănă ca tiktok-ul doar că tu ai doar teorie și explicații.

Karla S

utilizator Android

Nu mai trebuie să stau cu orele să învăț după caiet când pot să citesc de 2 ori lecțiile care apar aici și iau 10 la test ! Knowunity m-a ajutat să iau nota 9,20 la română ! Voi recomanda ff tare aceasta aplicate , să nu uităm ca are și chat GPT !👍🏻

Denisa B

utilizator iOS

m-a ajutat foarte mult să înțeleg anumite exerciții la diferite materii , mă ajută foarte mult la teme , explicându-mi pas cu pas tot , o aplicație excelentă !! RECOMAND !

Sarah L

utilizator Android

Este foarte bună te ajută la teme te face să înțelegi lecțiile am înțeles o lecție în 20 de minute i singură nu reușeam să o învăț dar cu Knowunity am învățat-o foarte ușor

Alessia V

utilizator iOS

Aplicația este foarte ușor de utilizat și bine concepută. Am găsit tot ce căutam până acum și am reușit să învăț multe din prezentări! Cu siguranță voi folosi aplicația pentru o temă la clasă! Și desigur, ajută mult ca sursă de inspirație.

Ștefan S

utilizator iOS

Această aplicație este super. Sunt atât de multe materiale de studiu și ajutor pentru elevi [...]. Materia mea mai problematică este franceza, de exemplu, și aplicația oferă foarte multe materiale ajutătoare. Mulțumită acestei aplicații, mi-am îmbunătățit franceza. Aș recomanda-o oricui.

Samantha Klich

utilizator Android

Wow, sunt cu adevărat impresionat. Am încercat aplicația pentru că am văzut-o promovată de multe ori și am rămas uimit. Aceasta este AJUTORUL de care ai nevoie pentru școală și, mai presus de toate, oferă atât de multe lucruri, precum exerciții și fișe de informații, care mi-au fost FOARTE de ajutor.

Anna

utilizator iOS

Te ajută să înveți foarte repede și ști foarte bine ce ai dori tu să înveți, vă recomand cu drag să încercați și să învățați mai repede.!

Thomas R

utilizator iOS

Foarte bună aplicația!!!! Mă ajută să înțeleg mult mai bine lecțiile și temele le termin mult mai repede.👍❤️

Paul P

utilizator Android

Te ajută foarte bine la teme acest robot,recomand!

David K

utilizator iOS

Aplicația e grozavă! Tot ce trebuie să fac este să introduc subiectul în bara de căutare și primesc răspunsul foarte rapid. Nu mai trebuie să mă uit la 10 videoclipuri pe YouTube pentru a înțelege ceva, deci îmi economisesc timpul. Super recomandat!

Sudenaz Ocak

utilizator Android

La școală eram chiar slab la matematică, dar datorită aplicației, mă descurc mai bine acum. Sunt atât de recunoscător că ai creat aplicația.

Greenlight Bonnie

utilizator Android

Această aplicație e super interesantă și seamănă ca tiktok-ul doar că tu ai doar teorie și explicații.

Karla S

utilizator Android

Nu mai trebuie să stau cu orele să învăț după caiet când pot să citesc de 2 ori lecțiile care apar aici și iau 10 la test ! Knowunity m-a ajutat să iau nota 9,20 la română ! Voi recomanda ff tare aceasta aplicate , să nu uităm ca are și chat GPT !👍🏻

Denisa B

utilizator iOS

m-a ajutat foarte mult să înțeleg anumite exerciții la diferite materii , mă ajută foarte mult la teme , explicându-mi pas cu pas tot , o aplicație excelentă !! RECOMAND !

Sarah L

utilizator Android

Este foarte bună te ajută la teme te face să înțelegi lecțiile am înțeles o lecție în 20 de minute i singură nu reușeam să o învăț dar cu Knowunity am învățat-o foarte ușor

Alessia V

utilizator iOS

 

Fizică

63

24 dec. 2025

43 pagini

Introducere în Teoria Relativității Restrânse

Ș

Ștefănescu Daria

@dariaaa27

Teoria relativității restrânse, formulată de Einstein în 1905, reprezintă o revoluție în fizică, schimbând fundamental percepțiile noastre despre spațiu și timp. Vom explora principiile acestei teorii, de la transformările Galilei din mecanica clasică la experimentele care au condus la necesitatea... Afișează mai mult

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

Introducere în teoria relativității restrânse

Teoria relativității restrânse (TRR) studiază fenomenele fizice raportate la sistemele de referință inerțiale și a fost formulată de Albert Einstein în 1905. Acest capitol începe cu o analiză a conceptului de eveniment și coordonate.

Un eveniment în fizică este definit prin patru coordonate: trei spațiale (x, y, z) care indică locul și una temporală (t) care arată momentul. Aceleași evenimente pot fi observate din sisteme de referință (SR) diferite, fiecare observator măsurând coordonatele cu propriile instrumente.

Transformările de coordonate stabilesc legătura dintre măsurătorile făcute de observatori diferiți. Un aspect important este diferența dintre mărimile relative (care depind de sistemul de referință) și cele absolute sau invariante (care sunt identice pentru toți observatorii).

🔍 Reține! Mecanica clasică presupune că interacțiunile se transmit instantaneu la distanță (cu viteză infinită), ceea ce permite existența unui timp universal pentru toți observatorii.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

Transformările Galilei

Transformările Galilei se aplică în cazul sistemelor de referință inerțiale (SRI) care se mișcă cu viteze mici comparativ cu viteza luminii. Aceste transformări reflectă principiile mecanicii clasice newtoniene.

Prima transformare Galilei privește timpul și afirmă că timpul este absolut, identic pentru toți observatorii:

t = t'

Acest lucru implică simultaneitatea absolută - evenimente care sunt simultane pentru un observator vor fi simultane pentru orice alt observator. În mecanica clasică, duratele (intervalele de timp) sunt considerate absolute, invariante, indiferent de mișcarea ceasornicelor sau a obiectelor.

Pentru a deduce restul transformărilor Galilei, considerăm două sisteme de referință inerțiale S și S' în mișcare relativă cu viteza constantă. Măsurătorile temporale în cele două sisteme sunt identice, însă coordonatele spațiale se transformă conform unor reguli care țin cont de mișcarea relativă.

💡 Important! În mecanica clasică, timpul curge identic pentru toți observatorii, indiferent de starea lor de mișcare - un concept care va fi complet schimbat de teoria relativității.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

Relațiile spațio-temporale în sistemele de referință

Considerând două sisteme de referință inerțiale S și S' cu originile O și O' aflate în mișcare relativă cu viteza constantă v0\vec{v}_0, putem stabili relația dintre vectorii de poziție ai unui punct P în cele două sisteme:

$\vec{r} = \vec{r'} + \vec{v}0 t' + \vec{r}{0i}$

Aici, r0i\vec{r}_{0i} reprezintă poziția inițială a originii O' față de O, iar termenul v0t\vec{v}_0 t' reflectă deplasarea sistemului S' față de S în timpul scurs.

Această relație vectorială poate fi exprimată în coordonate carteziene, obținând transformările Galilei complete:

SS:{x=x+v0xt+x0i y=y+v0yt+y0i z=z+v0zt+z0i t=tS' \Rightarrow S: \begin{cases} x = x' + v_{0x}t' + x_{0i} \ y = y' + v_{0y}t' + y_{0i} \ z = z' + v_{0z}t' + z_{0i} \ t = t' \end{cases}

Aceste ecuații arată cum se transformă coordonatele spațiale și temporale când trecem de la un sistem de referință la altul.

🔍 Observație! Transformările Galilei sunt fundamentale pentru înțelegerea relativității clasice, dar ele vor fi înlocuite de transformările Lorentz în teoria relativității restrânse.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

Invarianții în mecanica clasică

În mecanica clasică, anumite mărimi fizice rămân neschimbate (invariante) la trecerea între sistemele de referință inerțiale.

Invarianța accelerației este un concept fundamental. Când trecem de la un sistem de referință la altul, accelerația corpului rămâne aceeași:

a=a\vec{a} = \vec{a'}

Acest lucru înseamnă că un corp are aceeași accelerație în orice sistem de referință inerțial - o proprietate importantă pentru formularea legilor lui Newton.

Invarianța forțelor rezultă direct din invarianța accelerației. În mecanica clasică, masa unui corp este considerată aceeași în toate sistemele de referință, iar din relația F=ma\vec{F} = m\vec{a} rezultă că:

F=F\vec{F} = \vec{F'}

Adică toți observatorii din sisteme inerțiale vor măsura aceeași forță acționând asupra unui corp.

💡 Reține! În mecanica clasică, forța și accelerația sunt invarianți la transformările Galilei, ceea ce permite aplicarea universală a legilor lui Newton în orice sistem inerțial.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

Transformări Galilei în cazul simplificat

În practică, deseori întâlnim situații simplificate în care sistemele de referință au axe comune sau paralele. Un caz particular important este când sistemele S și S' au:

  • originile comune la momentul inițial
  • axele Ox și O'x' coliniare
  • celelalte axe paralele
  • sistemul S' se deplasează cu viteza v0\vec{v_0} pe direcția axei Ox

În acest caz, transformările Galilei SSS' \Rightarrow S se simplifică la:

\left{ \begin{array}{l} x = x' + v_0 t' \ y = y' \ z = z' \ t = t' \end{array} \right.

Transformările inverse SSS \Rightarrow S' se obțin simplu, schimbând semnul vitezei:

\left{ \begin{array}{l} x' = x - v_0 t \ y' = y \ z' = z \ t' = t \end{array} \right.

Aceste forme simplificate sunt folosite frecvent în probleme de mecanică clasică și oferă o imagine clară a relațiilor dintre coordonatele măsurate în cele două sisteme.

🔍 Notă! Cu cât sistemele de referință au o geometrie mai simplă (axe paralele sau coliniare), cu atât transformările dintre ele devin mai ușor de aplicat.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

Principiul relativității în mecanica clasică

Principiul relativității reprezintă o idee centrală în fizică, enunțând că legile mecanicii sunt aceleași în toate sistemele de referință inerțiale. Acest principiu poate fi reformulat și astfel: legile mecanicii sunt invariante la transformările Galilei.

Ce înseamnă acest lucru practic? Toate sistemele de referință inerțiale sunt echivalente din punct de vedere mecanic - niciunul nu poate fi considerat absolut sau privilegiat. Este imposibil să determinăm, prin experimente mecanice efectuate într-un laborator inerțial, dacă laboratorul este în repaus sau în mișcare rectilinie uniformă.

Situația se schimbă când vorbim despre sisteme de referință neinerțiale (SRN). Principiile lui Newton nu sunt valabile în astfel de sisteme, ceea ce înseamnă că putem determina accelerația unui SRN față de un sistem inerțial prin experimente mecanice realizate în interiorul său.

Un exemplu celebru este pendulul lui Foucault, care a demonstrat rotația Pământului în jurul axei sale - dovadă clară că Pământul este un sistem de referință neinerțial.

💡 Important! Principiul relativității implică imposibilitatea detectării mișcării rectilinii uniforme din interiorul unui sistem închis - o idee fundamentală care va fi extinsă dramatic în teoria relativității restrânse.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

Limitele relativității galileene

Aplicarea principiului relativității galileene la fenomenele electromagnetice întâmpină dificultăți majore, care evidențiază limitele mecanicii clasice newtoniene:

  1. Câmpul electromagnetic depinde de starea de mișcare a corpurilor încărcate electric, contrar invarianței anticipate de principiul relativității.

  2. Forța electromagnetică ce acționează asupra unei sarcini electrice depinde de viteza sarcinii față de sistemul de referință în care sunt formulate legile câmpului.

  3. Teoria lui Maxwell indică faptul că viteza luminii în vid are valoarea c=3108c=3\cdot10^{8} m/s, aceeași în toate direcțiile. Conform regulii clasice de compunere a vitezelor, acest lucru ar trebui să fie imposibil - viteza luminii ar trebui să fie diferită $\vec{c}-\vec{v}$ în sisteme de referință diferite.

Apare astfel o contradicție fundamentală: dacă acceptăm transformările Galilei, legile mecanicii respectă principiul relativității, dar legile electromagnetismului nu. Pentru a rezolva această contradicție, s-au formulat teorii care presupuneau existența unui mediu special numit eter universal - un suport material pentru câmpul electromagnetic.

🔍 Conflictul fundamental: Electrodinamica lui Maxwell implică o viteză constantă a luminii, incompatibilă cu transformările Galilei care ar trebui să modifice această viteză la trecerea dintr-un sistem de referință în altul.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

Încercări de salvare a mecanicii clasice

Pentru a rezolva contradicția dintre electrodinamică și mecanica clasică, au apărut două teorii principale, ambele bazate pe conceptul de eter universal:

Ipoteza antrenării totale a eterului, formulată de Hertz, susținea că eterul este complet antrenat de corpurile în mișcare. Astfel, viteza luminii ar fi aceeași față de orice corp, indiferent de mișcarea sa uniformă. Această teorie păstra conceptele clasice despre spațiu și timp, dar a fost infirmată de experiența lui Fizeau.

Ipoteza neantrenării eterului, propusă de Lorentz, considera eterul ca fiind imobil și reprezentând un sistem de referință inerțial special, în care legile electrodinamicii au forma cea mai simplă dată de Maxwell. Doar în acest sistem viteza luminii ar avea valoarea constantă de 31083 \cdot 10^8 m/s în toate direcțiile. Această teorie nu a fost confirmată de experimentul Michelson-Morley.

Albert Michelson a construit un interferometru special pentru a încerca să detecteze mișcarea Pământului prin eter, căutând dovezi pentru existența unui "vânt eteric" - o încercare de a demonstra posibilitatea folosirii eterului ca sistem unic de referință pentru experiențele optice.

💡 Impas științific: La sfârșitul secolului XIX, fizica se afla într-un impas major - experimentele nu reușeau să confirme niciuna dintre teoriile care încercau să reconcilieze electrodinamica cu mecanica newtoniană.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

Experimentul Michelson-Morley

Experimentul Michelson-Morley, realizat în 1881 și perfecționat ulterior, reprezintă una dintre cele mai importante încercări de a demonstra existența eterului și de a măsura mișcarea Pământului față de acesta.

Interferometrul Michelson este un dispozitiv ingenios format din:

  • Două oglinzi plane (O₁ și O₂)
  • O oglindă semitransparentă (P) care reflectă 50% din lumină și lasă restul să treacă
  • Oglinda semitransparentă așezată la 45° față de direcția luminii incidente

Principiul de funcționare este simplu: fasciculul incident se divide în două, unul reflectat către oglinda O₁, celălalt transmis către oglinda O₂. După reflexie, ambele fascicule se întorc la oglinda semitransparentă, unde interfereaza și produc franje circulare.

Interferometrul era montat pe un bloc de beton plutitor pe o baie de mercur, permițând rotirea ușoară a întregului dispozitiv. Un braț al interferometrului era orientat est-vest, paralel cu direcția vitezei orbitale a Pământului, iar celălalt nord-sud, perpendicular pe aceasta.

Teoria eterului prevedea că lumina ar trebui să se deplaseze cu viteze diferite pe cele două brațe ale interferometrului, datorită "vântului eteric", ceea ce ar fi trebuit să producă o schimbare vizibilă în modelul de interferență la rotirea aparatului.

🔍 Experiment crucial: Michelson și Morley au creat un experiment extrem de precis, capabil să detecteze chiar și cele mai mici diferențe în timpul de parcurs al luminii pe direcții diferite - rezultatul va schimba fundamental fizica.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

Rezultatele experimentului și implicațiile sale

Experimentul Michelson-Morley se bazează pe diferența teoretică dintre timpii de propagare ai luminii pe cele două brațe ale interferometrului. Calculele arătau că:

Pentru brațul perpendicular pe direcția de mișcare: t1=2dc11v2c2t_1 = \frac{2d}{c} \cdot \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}

Pentru brațul paralel cu direcția de mișcare: t2=2dc(1v2c2)t_2 = \frac{2d}{c \left(1 - \frac{v^2}{c^2}\right)}

Aceste formule arată clar că timpii ar trebui să fie diferiți: t1t2t_1 \neq t_2. La rotirea interferometrului cu 90°, această diferență ar trebui să producă o deplasare a franjelor de interferență.

Rezultatul surprinzător: Michelson și Morley nu au detectat nicio deplasare semnificativă a franjelor! Acest rezultat negativ a indicat că viteza luminii este aceeași în toate direcțiile, indiferent de mișcarea Pământului.

Acest experiment a avut consecințe revoluționare:

  • A infirmat teoria eterului
  • A sugerat că viteza luminii este constantă în toate sistemele de referință
  • A pregătit terenul pentru teoria relativității restrânse a lui Einstein

💡 Concluzie revolutionară: Experimentul Michelson-Morley a arătat că legile fizicii nu se supun transformărilor Galilei când vine vorba de propagarea luminii, necesitând o nouă teorie a relativității - ceea ce Einstein va formula în 1905.

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

--- OCR Start ---
Fizică - Curs 4
Teoria relativității restrânse (TRR)
Teoria relativității restrânse studiază fenomenele fizice în raport
c

Înscrie-te pentru a vedea CONȚINUTULE gratuit!

Acces la toate documentele

Îmbunătățește notele tale!

Alătură-te milioanelor de elevi

Prin înregistrare, accepți Termenii de serviciu și Politica de confidențialitate

Credeam că nu vei întreba niciodată...

Ce este Companionul AI Knowunity?

Companionul nostru AI este creat special pentru nevoile studenților. Bazându-ne pe milioanele de materiale de pe platformă, putem oferi răspunsuri exacte și relevante pentru studenți. Dar nu este vorba doar despre răspunsuri, companionul este mai ales despre ghidarea studenților prin provocările zilnice de învățare, cu planuri de studiu personalizate, chestionare sau conținuturi în chat și personalizare 100% bazată pe abilitățile și evoluțiile studenților.

De unde pot descărca aplicația Knowunity?

Aplicația este disponibilă în Google Play Store și Apple App Store.

Este Knowunity chiar gratuită?

Da! Bucură-te de access la materiale de studiu, conectează-te cu alți elevi, și primește ajutor instant - toate acestea la un click distanță. În plus, câștigă puncte ca să deblochezi mai multe funcționalități!

1

Instrumente inteligente NOU

Transformă această notiță în: ✓ 50+ întrebări de exersare ✓ Flashcard-uri interactive ✓ Simulare completă ✓ Planuri de eseu

Simulare
Quiz
Flashcard-uri
Eseu

Nu găsești ce cauți? Explorează alte MATERII.

Recenzii de la utilizatorii noștri. Ei iubesc să folosească Knowunity — și tu o vei face.

4.9/5

App Store

4.8/5

Google Play

Aplicația este foarte ușor de utilizat și bine concepută. Am găsit tot ce căutam până acum și am reușit să învăț multe din prezentări! Cu siguranță voi folosi aplicația pentru o temă la clasă! Și desigur, ajută mult ca sursă de inspirație.

Ștefan S

utilizator iOS

Această aplicație este super. Sunt atât de multe materiale de studiu și ajutor pentru elevi [...]. Materia mea mai problematică este franceza, de exemplu, și aplicația oferă foarte multe materiale ajutătoare. Mulțumită acestei aplicații, mi-am îmbunătățit franceza. Aș recomanda-o oricui.

Samantha Klich

utilizator Android

Wow, sunt cu adevărat impresionat. Am încercat aplicația pentru că am văzut-o promovată de multe ori și am rămas uimit. Aceasta este AJUTORUL de care ai nevoie pentru școală și, mai presus de toate, oferă atât de multe lucruri, precum exerciții și fișe de informații, care mi-au fost FOARTE de ajutor.

Anna

utilizator iOS

Te ajută să înveți foarte repede și ști foarte bine ce ai dori tu să înveți, vă recomand cu drag să încercați și să învățați mai repede.!

Thomas R

utilizator iOS

Foarte bună aplicația!!!! Mă ajută să înțeleg mult mai bine lecțiile și temele le termin mult mai repede.👍❤️

Paul P

utilizator Android

Te ajută foarte bine la teme acest robot,recomand!

David K

utilizator iOS

Aplicația e grozavă! Tot ce trebuie să fac este să introduc subiectul în bara de căutare și primesc răspunsul foarte rapid. Nu mai trebuie să mă uit la 10 videoclipuri pe YouTube pentru a înțelege ceva, deci îmi economisesc timpul. Super recomandat!

Sudenaz Ocak

utilizator Android

La școală eram chiar slab la matematică, dar datorită aplicației, mă descurc mai bine acum. Sunt atât de recunoscător că ai creat aplicația.

Greenlight Bonnie

utilizator Android

Această aplicație e super interesantă și seamănă ca tiktok-ul doar că tu ai doar teorie și explicații.

Karla S

utilizator Android

Nu mai trebuie să stau cu orele să învăț după caiet când pot să citesc de 2 ori lecțiile care apar aici și iau 10 la test ! Knowunity m-a ajutat să iau nota 9,20 la română ! Voi recomanda ff tare aceasta aplicate , să nu uităm ca are și chat GPT !👍🏻

Denisa B

utilizator iOS

m-a ajutat foarte mult să înțeleg anumite exerciții la diferite materii , mă ajută foarte mult la teme , explicându-mi pas cu pas tot , o aplicație excelentă !! RECOMAND !

Sarah L

utilizator Android

Este foarte bună te ajută la teme te face să înțelegi lecțiile am înțeles o lecție în 20 de minute i singură nu reușeam să o învăț dar cu Knowunity am învățat-o foarte ușor

Alessia V

utilizator iOS

Aplicația este foarte ușor de utilizat și bine concepută. Am găsit tot ce căutam până acum și am reușit să învăț multe din prezentări! Cu siguranță voi folosi aplicația pentru o temă la clasă! Și desigur, ajută mult ca sursă de inspirație.

Ștefan S

utilizator iOS

Această aplicație este super. Sunt atât de multe materiale de studiu și ajutor pentru elevi [...]. Materia mea mai problematică este franceza, de exemplu, și aplicația oferă foarte multe materiale ajutătoare. Mulțumită acestei aplicații, mi-am îmbunătățit franceza. Aș recomanda-o oricui.

Samantha Klich

utilizator Android

Wow, sunt cu adevărat impresionat. Am încercat aplicația pentru că am văzut-o promovată de multe ori și am rămas uimit. Aceasta este AJUTORUL de care ai nevoie pentru școală și, mai presus de toate, oferă atât de multe lucruri, precum exerciții și fișe de informații, care mi-au fost FOARTE de ajutor.

Anna

utilizator iOS

Te ajută să înveți foarte repede și ști foarte bine ce ai dori tu să înveți, vă recomand cu drag să încercați și să învățați mai repede.!

Thomas R

utilizator iOS

Foarte bună aplicația!!!! Mă ajută să înțeleg mult mai bine lecțiile și temele le termin mult mai repede.👍❤️

Paul P

utilizator Android

Te ajută foarte bine la teme acest robot,recomand!

David K

utilizator iOS

Aplicația e grozavă! Tot ce trebuie să fac este să introduc subiectul în bara de căutare și primesc răspunsul foarte rapid. Nu mai trebuie să mă uit la 10 videoclipuri pe YouTube pentru a înțelege ceva, deci îmi economisesc timpul. Super recomandat!

Sudenaz Ocak

utilizator Android

La școală eram chiar slab la matematică, dar datorită aplicației, mă descurc mai bine acum. Sunt atât de recunoscător că ai creat aplicația.

Greenlight Bonnie

utilizator Android

Această aplicație e super interesantă și seamănă ca tiktok-ul doar că tu ai doar teorie și explicații.

Karla S

utilizator Android

Nu mai trebuie să stau cu orele să învăț după caiet când pot să citesc de 2 ori lecțiile care apar aici și iau 10 la test ! Knowunity m-a ajutat să iau nota 9,20 la română ! Voi recomanda ff tare aceasta aplicate , să nu uităm ca are și chat GPT !👍🏻

Denisa B

utilizator iOS

m-a ajutat foarte mult să înțeleg anumite exerciții la diferite materii , mă ajută foarte mult la teme , explicându-mi pas cu pas tot , o aplicație excelentă !! RECOMAND !

Sarah L

utilizator Android

Este foarte bună te ajută la teme te face să înțelegi lecțiile am înțeles o lecție în 20 de minute i singură nu reușeam să o învăț dar cu Knowunity am învățat-o foarte ușor

Alessia V

utilizator iOS